

Studio e validazione di modelli matematici per l'ottimizzazione di impianti di DA in scala industriale

Progetto di Dottorato

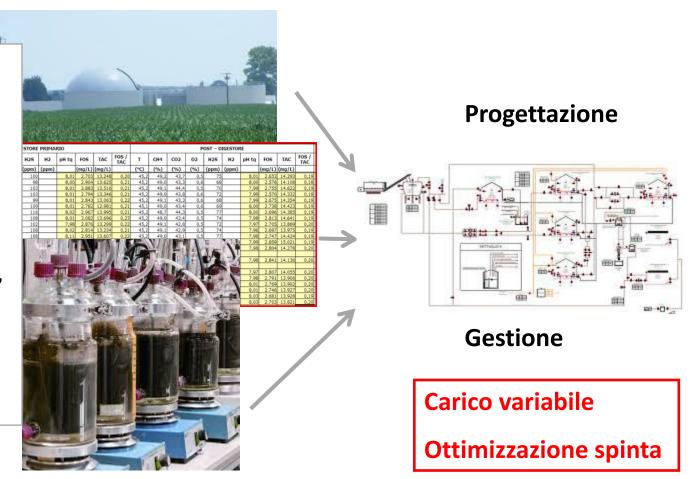
SEBIGAS

(GRUPPO INDUSTRIALE MACCAFERRI)

DICAM (Dipartimento Ingegneria Civile, Chimica, Ambientale e dei Materiali), Università di Bologna

Approccio parametrico

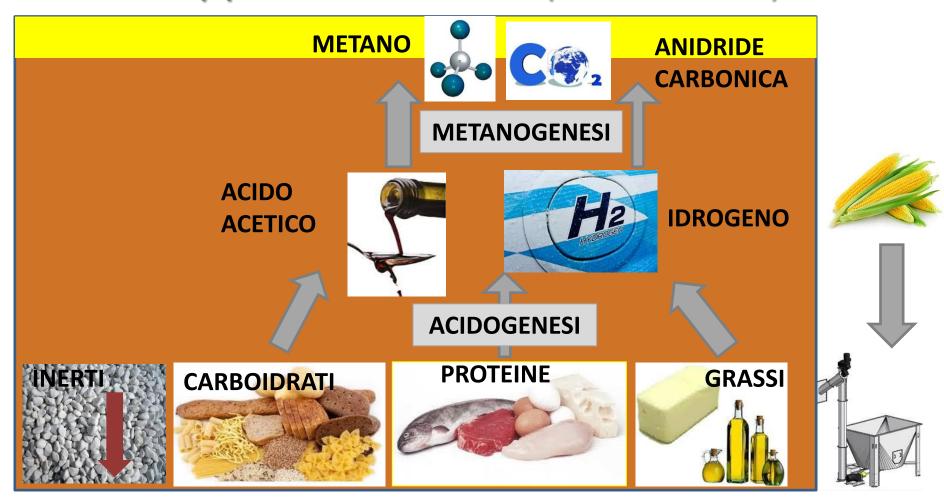
Produzione biogas

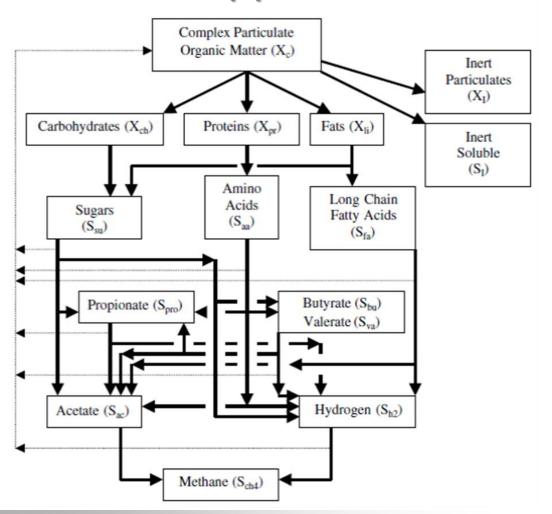

Efficienza

Problematiche impiantistiche

Parametri di processo (HRT, OLR, analisi chimiche)

BMP


Qualità del biogas


Approccio cinetico (biochimico)

Approccio cinetico: ADM1

ADM1:

Variabili di stato e processi (equazioni di bilancio di materia)

Condiviso dalla comunità scientifica (WWT e AD)

OCTAVE (analisi numerica, open source, equilibrio e transitorio)

Raccolta dati

PLANTS IN OPERATION (associated Companies)	Power installed	No. Plant
Piedmont	3.7 MW	4
Lombardy	1 MW	1
Emilia-Romagna	3 MW	3
Friuli Venezia Giulia	2 MW	2
Sardinia	3 MW	3
Umbria	1 MW	1
Tuscany	2 MW	2
Lazio	1 MW	1
Abruzzo	1 MW	1
TOTAL	17.7 MW	18

Power installed	No. Plant
5 .9 MW	7
11.9 MW	13
11 MW	11
1 MW	1
1 MW	1
30.8 MW	33
	5.9 MW 11.9 MW 11 MW 1 MW

Biomasse

Deiezioni animali (suini, bovini, avicole...) Resa Biogas ~ 200 – 500 m³/t ODS

Residui colturali (Paglia, colletti barbabietole...) Resa Biogas ~ 350 – 400 m³/t ODS

Scarti agroindustria (siero, scarti vegetali...) Resa Biogas ~ 400 – 800 m³/t ODS

Biomasse

Scarti macellazione (carne, pelle, sangue...) Resa Biogas ~ 550 – 1100 m³/t ODS

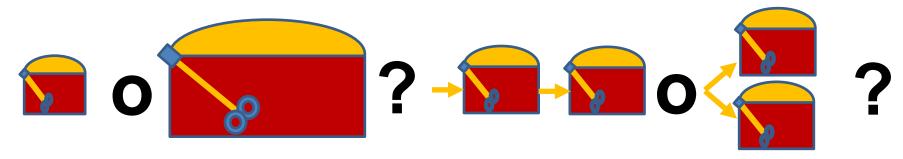
Fanghi di depurazione Resa Biogas ~ 250 – 350 m³/t ODS

Frazione organica rifiuti (FORSU) Resa Biogas ~ 400 – 600 m³/t ODS

Colture energetiche (mais, sorgo, triticale...) Resa Biogas ~ 550 – 750 m³/t ODS

Stato attuale: Verifica e validazione

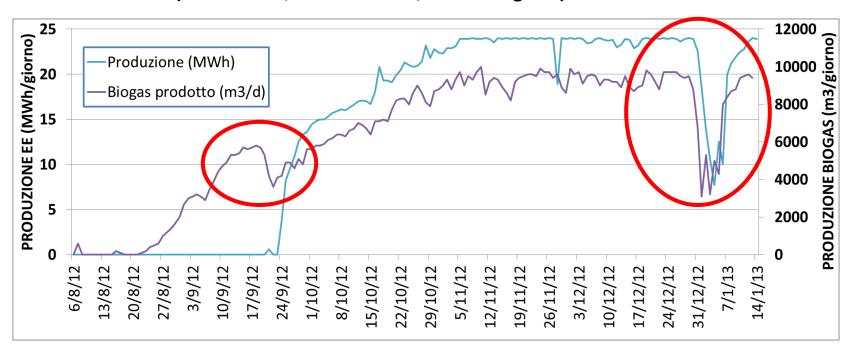
STATO STAZIONARIO


PRODUZIONE (m3 biogas/giorno)
HRT (g)
OLR (kg SV/m3/g)
% SS e % SSO
N-NH3 (mg/L)
%CH4
%CO2
H2 (ppm)
рН
ACIDI GRASSI VOLATILI
CONCENTRAZIONE METABOLITI
•••

VANTAGGI

- Capacità di prevedere il processo di DA dalla composizione chimica delle matrici e pochi altri parametri
- Conoscenza biochimica più approfondita e degli ordini di grandezza delle diverse vie metaboliche
- Progettazione: prevedere substrati innovativi dalla composizione chimica (sinergie, criticità)
- Simulazioni multiple per l'ottimizzazione in fase di progettazione

- Basi per studi in laboratorio in batch e in continuo mirati



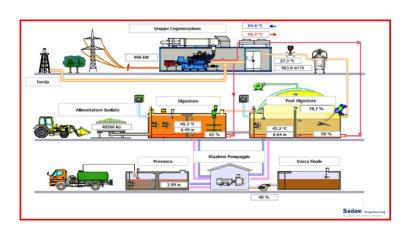
VANTAGGI

- Gestione transitori (avviamento, manutenzioni, crisi biologiche)

- Ottimizzazione produttività impianti esistenti

VANTAGGI

- Gestione alimentazione matrici variabili nel tempo (FORSU) tramite analisi chimiche veloci e semplici



SVANTAGGI

- Assunzioni (miscelazione perfetta, reazioni chimiche e biochimiche dello zolfo)

approfondire lo studio in bibliografia e sui dati in database dei parametri non modellizzati

- Limiti della previsione derivati dall'ampiezza della casistica a disposizione

ampliare il database con analisi, test batch, dati da impianto

CONCLUSIONI E PROSPETTIVE

- Modelli apportano una serie di vantaggi in fase di progettazione e gestione
- Necessità di verifica e validazione in scala di laboratorio e industriale
- Applicazioni dirette per ottimizzazione della gestione di impianti esistenti
- Strumento di ricerca e progettazione
- Modificabile e implementabile
- Validazione del modello in stato stazionario
- Implementazione e validazione in transitorio in corso

GRAZIE PER L'ATTENZIONE

